

Transformative RNA Based Treatments for Pulmonary Diseases

Corp. Update 2022 NON-CONFIDENTIAL

SpliSense – Pulmonary Diseases Focused Company

- > Founded in 2017 by Prof. Batsheva Kerem (Hebrew University)
 - > Part of the global team that cloned the CFTR gene
- Leadership team and advisors with strong track record in pulmonary development of inhaled therapies and ASOs

R&D Status

- > Inhaled Antisense Oligonucleotides (ASOs)
 - > High unmet need, orphan indications –Cystic Fibrosis
 - Larger, non orphan pulmonary indications Muco- obstructive diseases
 - > ASOs clinically validated approach

Financial

Antisense Oligonucleotides – Modulating RNA (MoA)

Proprietary computational Algorithms for Splicing modulation and ASOs optimization

Established combined **inhaled Delivery** system

SpliSense's Platform Technology

Robust genetic understanding of **pulmonary** diseases

Antisense Oligonucleotides-Modulating RNA

SpliSense's Strategy from Orphan to Large Pulmonary Indications

SpliSense's Pulmonary Diverse Pipeline

Indication	Approach	Program	Discovery	IND Enabling Studies	Clinical Studies
Cystic Fibrosis	Restoration of Protein Function	SPL84 (3849 Mut.)			H2 2022
		SPL16 (2789 Mut.)			
	Production of Modified Protein	SPL23 (W1282X Mut.)			H2 2023
		SPL24 (N1303K Mut.)			
Muco- Obstructive Diseases	Decrease Production of Over-expressed Proteins	SPL5A			2024
COPD, Asthma, Pulmonary Fibrosis		SPL5B			

SpliSense Tackle Key Challenges of ASOs' Delivery to Lungs

SpliSense's ASOs Have Unique Properties for Lung Delivery

Natural	Durable	Precise	
No vectors or delivery vehicles are needed	 Lungs T_{1/2} ≈ 2 weeks Proven stability and Mucus 	Highly specific to target sequence	
Enable direct, non-invasive delivery	 Proven stability in lysosomes 	 Minimal systemic exposure Lung specific 	
Lung cells uptake through endocytosis to:	extract and under acidic conditions	 Proper Distribution in conducting airways 	
Epithelia cellsNucleus	 End products are expected to be given to patients once a week or less 	 Clinically validated chemical modification patterns 	

SpliSense's ASOs Properly Distribute & Retained in WT and "Mucus Obstructive" Mice (β-ENaC) Lungs

Staining for SPL ASO following IT administration - dark staining

Comparable Distribution of SpliSense' ASOs in WT and "Mucus Obstructive" (β-ENaC) Mice Lungs

SpliSense's ASOs Can Be Detected in the Nucleus of Lung Epithelial Cells

Low and power (objective x10 and x100) microphotograph of lower-level bronchus and bronchiole section of beta ENaC mice lungs suggesting that SPL84-23 penetrates the target cells.

Cystic Fibrosis Programs

Cystic Fibrosis – Need for Novel Drugs

- > A progressive, autosomal recessive genetic disease
- Caused by dysfunction of the CFTR transmembrane protein (chloride channel)
- Affects ~100,000 people worldwide
- The median predicted survival of people with CF is about 48 years
- Existing drugs alleviate symptoms but do not cure the disease
 - > Suggesting that:
 - > 33% of Trikafta® treated patients are not responding
 - > 33% of Trikafta® treated patients have moderate response
- Lung transplantation is the only definitive treatment option for CF patients with end stage lung disease

Future of CF Treatments Modalities

"A third of the people clearly have a big response... Another third have **an obvious response**, **but it may not be quite as dramatic**... **Another third**, **there isn't as big a response...**"

Peter Mogayz MD. ; Johns Hopkins School of Medicine

BofA Research, Feb 2022

"Trikafta is an excellent drug – indeedHowever, **it's a band-aid, not a cure**...... worries physicians, who predict that patients will be burdened by **declining lung function** eventually leading to substandard quality of life"

Josh Reshnik MD. RA Capital

SPL84 (Anti 3849 Mutation ASO)

Retains protein structure and activity

3849 Mutation – Unmet Need

ASO Technology Produce Mature and Functioning WT CFTR

SPL84 Completely Restores CFTR Function in CF Patient Homozygote Derived Lung Cells (HBEs)

- Ussing Assay is a Gold Standard for CF drugs efficacy assessment (FDA)
- SPL84 completely restores CFTR function in 3849 patients derived Human Bronchial Epithelial Cells (HBEs)
- Symdeko® (tezacaftor/ivacaftor) has no effect on 3849 CF patient.
 - Strong correlation of Ussing analysis to clinical outcome

SPL84 Completely Restores CFTR Function in Heterozygous **Patients' Derived Cells**

- Ussing Assay is a Gold Standard for CF drug efficacy assessment (FDA)
- > SPL84 completely restores CFTR function in 3849 patient derived Human Nasal Epithelial Cells (HNEs) and **Bronchial Epithelial Cells** (HBEs)

HBEs from a patient (3849/F508del)

SPL84 & Trikafta® have comparable & Synergic Effect in Heterozygous CF Patient Derived Lung Cells (HBEs)

- 50% of WT activity is the maximal effect in heterozygous patients. Synergic effect of combo. is observed
- SPL84/ Trikafta® completely restores CFTR function in F508del/ 3849 patient derived Human Bronchial Epithelial Cells (HBEs)

Phase 1/2a Proposed Clinical Study Design To Be Initiated in H2 2022

*Final doses will be selected based on tox. results

SPL84-23 Program (3849) Expedite Path To Approval

SPL23 (Anti W1282X Mutation ASO)

Modulates RNA processing and production of modified proteins

23

W1282X (Exon 23) Mutation – Unmet Need

TAM ~\$550M

~30yrs.

W1282X/non-F508del No approved drug

Patient # Annual Growth 3.5%

Potential Expedite Regulatory path

W1282X Exon 22 Intron 22 Exon 23 Intron 23 Exon 24 W1282X W1282X Non-Non-Exon 24 Intron 22 Intron 23 Exon 22 Intron 22 Intron 23 Exon 24 mature mature RNA RNA ASO Splicing mRNA **No CFTR Protein or** Exon 24 Lacking exon 23 Activity **Functional CFTR Protein** + CFTR + wт 250 Control ASO SPL22 α-CFTR (596) + + CFTR + + wт 250 130 α-CFTR (596) α-Calnexin 95 130 α-Calnexin 95

W1282X Mutation - No CFTR Protein & No Activity

SPL23 Properly Restores CFTR Function in W1282X Patient Derived Nasal Cells

Restoration of CFTR Function by Ussing

Potentially Translated to Significant Lung Function Improvement (~40% of HVs)

SPL23-2 Program (W1282X) Clinical & Regulatory Road Map

Expanding SpliSense Platform Technology from Orphan to Large Pulmonary Indications

Mucin Lowering ASO (SPL5)

Decrease production of over – expressed proteins

Mucus Hypersecretion is a Clinical Feature of Severe Respiratory Diseases

- Mucus- The first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus
 - Mucus layer comprised of approximately 98% water, 2% solids (mostly mucins)
- MUC5AC, MUC5B are predominate mucins secreted in the lungs and polymerize to form gels
 - In muco-obstructive diseases mucins content increases to 5-9%
- > Mucus and mucins are generated by goblet cells
- > Excessive mucus drives:
 - > Respiratory infections
 - > Respiratory air blockage
 - Respiratory disease worsening

Muco-Obstructive Lung Disease Progression

SPL5 Lowers RNA and Protein Expression (MoA)

PoC Mucin Lowering ASO: Lungs Goblets Cells Distribution & Mucin Lowering Activity

Hybridization signal at the of goblet cells (Beta ENaC/WT mice)

Black staining - SPL ASO Blue\Purple staining-Mucus in goblet cells

A549 Human Lung Cancer Cells

200

SpliSense ASOs Approach: Platform Technology for Precises Pulmonary Therapies

Mastering protein production & expression in a targeted manner.

Management & Leadership Team

Gili Hart PhD - CEO

Biotech executive with extensive experience in global drug development from pre-clinical through successful Phase 3 trials. Former CEO of Mitoconix Bio and OPKO Biologics.

Nissim Darvish, M.D., Ph.D. – Chairman

Managing General Partner at MeOhr Ventures Former Director at Orbimed Advisors LLC and Orbimed Israel Partners. Spent 8 years prior with Pitango Venture Capital

Batsheva Kerem PhD -Co-founder & CSO

Prof. Hebrew University of Jerusalem. 30 years of leading research in CF genetics starting with the discovery of the CFTR gene..

Prof. Eitan Kerem MD -CMO

Pediatric pulmonologist; Head of the Pediatric Pulmonology Unit of HMC Jerusalem, Chairman of the Israeli CF Foundation CAB.

Oren Gez, MBA- CBO

An experienced and appreciated financer with over 18 years of experience in the global capital market working at local and international investment banking.

Efrat Ozeri-Galai PhD - VP Research

Extensive experience in CF and pulmonary diseases genetics, discovery and pre-clinical development.

Asaf Cohen, B.Sc, MBA - VP CMC

Vast experience in CMC worlds, focusing on production , analytical and device development under GMP regulatory environments.

Investment Opportunity - 2022 Financial Round

> Splisense is seeking to raise \$40M to support 2023-24 expenses including:

- > Advancing additional pre- clinical programs into the clinic (IND)
 - SPL23 (Anti W1282X Mutation ASO)
 - > SPL16/SPL24
 - Advancing Mucins lowering ASOs to IND
 - > MUC5AC
 - > MUC5B

SpliSense Value Inflection Points 2022-2024

Thank You!