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Premature termination codons (PTC) originate from nucleotide

substitution introducing an in-frame PTC. They induce truncated,

usually non-functional, proteins, degradation of the PTC

containing transcripts by the nonsense-mediated decay (NMD)

pathway and abnormal exon skipping. Readthrough compounds

facilitate near cognate amino-acyl-tRNA incorporation, leading

potentially to restoration of a functional full-length protein.Splicing

mutations can lead to aberrantly spliced transcripts by creating

a cryptic splice site or destroying a normal site. Most mutations

result in disruption of the open reading frame and activation of

NMD. Antisense oligonucleotides are single stranded short

synthetic RNA-like molecules chemically modified to improve

their stability and ability to recognize their target RNAs and

modify the splice site. This review focuses on recent

developments in therapies aiming to improve the health of CF

patients carrying nonsense or splicing mutations.
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Cystic fibrosis (CF), is caused by mutations in the CF

transmembrane conductance regulator (CFTR) gene,

leading to impaired anion secretion and ultimately

infected obstructive lung disease, among other symptoms

[1,2]. Novel insights and hopes have arisen from recent
www.sciencedirect.com 
proof of concept studies demonstrating that recovery of

10–25% of the wild-type (WT) CFTR activity is suffi-

cient to achieve significant clinical improvement [3,4��].

This review discusses recent developments in therapies

to improve CFTR function in patients carrying nonsense

or splicing mutations to achieve clinical benefit.

Nonsense mutations
Premature termination codons (PTCs) (UAG, UGA, or

UAA) (encoded by nonsense mutations) account for

�20% of gene defects in human diseases and are often

associated with severe phenotypes. PTCs usually origi-

nate from nucleotide substitutions introducing an in-

frame PTC. These mutations induce three distinct

molecular defects: firstly, production of a truncated, usu-

ally non-functional, protein; secondly, degradation of the

PTC containing transcripts by the nonsense-mediated

decay (NMD) pathway and thirdly, exon skipping, due

to the use of alternative cryptic acceptor or donor sites

within the exon encompassing the stop codon [5].

The 165 PTCs, described in the CFTR gene account for

�5 to 10% of all CF mutations (cystic fibrosis mutation

database; //http://www.genet.sickkids.on.ca/app). They

are mostly associated with severe forms of CF [6]. How-

ever, genotype–phenotype studies revealed wide vari-

ability in disease severity among patients and even among

sibs indicating that factors other than the mutation itself

affect CFTR function and disease severity [7].

Homeostatic cellular mechanisms affecting RNA

stability

Transcripts carrying nonsense mutations are subjected to

Nonsense Mediated Decay (NMD), a surveillance mech-

anism which detects and degrades transcripts carrying

nonsense mutations, preventing the synthesis of trun-

cated proteins [8] and protecting the cell from potentially

deleterious truncated proteins [9]. In vertebrates, the

NMD mechanism occurs following pre-mRNA splicing

and is mostly mediated by the exon junction complex

(EJC) loaded on mRNA upstream of exon–exon junctions

[10]. A stop codon located >50–55 nucleotides upstream

of an exon–exon junction is recognized as a PTC during

the pioneer round of translation [11]. The NMD pathway

is therefore a crucial cellular post-transcriptional re-

gulatory mechanism that affects the expression of

broad classes of physiologic transcripts [12]. As NMD
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modulates the level of nonsense transcripts available for

the readthrough treatment, this pathway also regulates

the response to read-though treatment [13].

Variability in NMD efficiency is an inherent feature of

cells [14] which can be modulated by genetic variations

[15], environmental conditions [16], or aberrant cellular

regulation [17]. Importantly, inefficient NMD increases

the number of transcripts carrying nonsense mutations,

resulting in generation of truncated proteins that cannot

be folded correctly and therefore accumulate in the

endoplamic reticulum (ER). This in turn activates the

Unfolded Protein Response (UPR) to restore cellular

homeostasis by activating ER chaperones and foldases

and inhibiting translation of new substrates [18]. This

translation attenuation also inhibits the NMD mechanism

by a feedback mechanism. Hence, the NMD and UPR

mechanisms and the interplay between them, may mod-

ulate the response to read-through treatment. Indeed

substantial differences in UPR activation were found

between patients correlating with their response to read-

through [19��].

Potential therapies for nonsense mutations

PTCs are susceptible to limited (�0.1%) constitutive

readthrough, which can be stimulated up to �2 to 6%

by readthrough compounds (e.g. gentamicin, G418) facil-

itating near cognate amino-acyl-tRNA incorporation [20],

leading potentially to restoration of a functional full-

length protein. If enough PTCs are converted to sense

codons, sufficient full-length protein might be produced

to provide a therapeutic benefit if the protein is functional

(illustrated in Figure 1). The best characterized read-

through drugs are aminoglycosides, demonstrated to

restore the CFTR-dependent Cl� secretion and protein

expression with improved clinical end-points [21,22].

Unfortunately, gentamicin cannot be used as a read-

through drug, due to serious renal toxicity and ototoxicity

when used for prolonged periods. High throughput

screening for readthrough drugs identified PTC124 (Ata-

luren), which has no antibiotic properties and is hypothe-

tized to promote readthrough of PTCs without affecting

the termination at normal stop codons and is without

severe side effects [23].

Variable responses to Gentamicin and Ataluren were

found among CF patients carrying the same nonsense

mutation [21,22,24–26]. This variability may reflect dif-

ferences in the efficiency of the treatment and can

depend on the stop codon itself and the near cognate

tRNA paired [27��], the nucleotide sequence neighboring

the PTC [28], the number of transcripts affected by exon

skipping [29��] and finally by the efficiency of NMD.

Indeed, responding patients had higher levels of CFTR

mRNA which could serve as templates for the read-

through processes, while non-responders had significantly

lower levels [13].
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Although a recent double-blind, placebo-controlled

Phase III study using Ataluren was unsuccessful, (PTC

Therapeutics Announces Results from Pivotal Phase

3 Clinical Trial of Ataluren in Patients Living with

Nonsense Mutation Cystic Fibrosis; http://ir.ptcbio.

com/releasedetail.cfm?ReleaseID=1015471 2017), novel

readthrough molecules are being identified, such as

RTC13 and RTC14 [30], NB124 and derivatives [31]

and recently Escin [32��]. Moreover, as some of the new

synthesized proteins are misfolded or possess defective

activity, increasing their function with CFTR correctors

and potentiators is likely to have therapeutic benefit

[33��,34��]. Importantly, the development of such novel

drugs should consider the impact on normal termination

codons to avoid off target effects.

Therefore, additional strategies to impede NMD effi-

ciency have the potential to improve the response to

readthrough. One of the possible ways to reduce NMD

efficiency is to inhibit the binding of the EJCs down-

stream of the considered PTC. This can be achieved with

gene-specific antisense oligonucleotides (AONs) for

PTCs that are susceptible to NMD [35]. Interestingly,

an NMD inhibitor, Amlexanox, has also been shown to

induce readthrough [36]. Such drugs with dual activities

might increase readthrough efficiency by increasing the

amount of target transcripts.

Splicing mutations
The splicing machinery

Precursor messenger RNA (pre-mRNA) is processed to

mature mRNA by removal of introns in a process named

RNA splicing. This process is carried out by the spliceo-

somes, ribonucleoprotein complexes that recognize the

exon–intron junctions and catalyze the precise removal of

introns and subsequent joining of exons. Alternative

splicing is the process by which a single primary transcript

yields different mature RNAs leading to the production

of different protein isoforms with diverse functions.

Most intron-containing transcripts are alternatively

spliced [37].

Splicing involves the precise removal of introns from pre-

mRNA, such that exons are spliced together to form

mature RNAs with intact translational reading frames.

Splicing requires exon recognition, accurate cleavage and

rejoining of exons. RNA splicing depends on the proper

recognition of exons guided in part by conserved

sequence elements at the exon–intron junctions: GT

and AG intronic dinucleotides at the donor and acceptor

intron/exon junctions, respectively. The recognition of

exon–intron boundaries also depends on less-conserved

consensus motifs, adjacent to both donor and acceptor

sites including the polypyrimidine tract and the branch

site [38–41]. In addition to the splice sites, exons are

defined by cis-acting regulatory elements, which have

been divided into four functional categories: exonic
www.sciencedirect.com
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Figure 1

Antisense PTC read-through therapy. Drugs should allow re-expression of a full length protein by binding of near-cognate tRNA.
splicing enhancers (ESEs), exonic splicing silencers

(ESSs), intronic splicing enhancers ((ISEs) also known

as intronic activators of splicing (IASs)) and intronic

splicing silencers (ISSs). These cis-acting elements inter-

act with trans-acting activators or repressors of splicing.

Exons are activated by ESEs that promote their inclusion

and are repressed by ESSs.

Splicing is carried out by the interaction of the splice-site

sequences with the spliceosome, which consists of five

small nuclear ribonucleoprotein (snRNP) complexes and

a large number (over 100) of non-snRNP proteins which

include splicing factors from the large family of serine–

arginine (SR) proteins and the heterogeneous nuclear

ribonucleoprotein (hnRNP) family. These splicing factors

interact with the spliceosome (through protein–protein

interactions) as well as with RNA (through RNA binding

domains), and are essential for constitutive splicing as well

as for alternative splicing (reviewed in [42]). Differences in

the levels of functional splicing factors were found among

different tissues, suggested to regulate the tissue specific

level of alternatively spliced transcripts.

Alternative splicing and CF

A significant proportion (20–30%) of disease-causing

mutations in humans affect pre-mRNA splicing

(reviewed in [43]). These mutations disrupt intronic or

exonic splicing motifs [44]. Splicing mutations can lead to

both aberrantly and correctly spliced transcripts, by par-

tial skipping of exons or inclusion of intronic sequences,

or can change the ratio of the programmed alternatively

spliced isoforms.

Mutations that alter splicing in cis can either enhance or

create splicing elements (creation of a cryptic splice site),
www.sciencedirect.com 
or weaken/destroy a splice site. Both types of mutations

can lead to abnormal exon definition, resulting in inap-

propriate inclusion or skipping of an exon. Most muta-

tions have a loss-of-function phenotype, as they usually

result in severe disruption of the open reading

frame and often also destabilize the mRNA through

NMD [36].

The CFTR gene comprises 27 coding exons, all required

for a functional CFTR protein. Nevertheless, several

exons were shown to undergo partial aberrant skipping,

generating non-functional CFTR proteins [45]. As of

today, more than 2000 mutations are now reported in

the CF mutation database (http://www.genet.sickkids.on.

ca/app). A significant fraction (10–15%) of CFTR muta-

tions affect pre-mRNA splicing of the gene by either

creating or destroying canonical splice sites or altering

ISE, ISS, ESE and ESS regulatory elements throughout

the gene [36]. Additionally, PTCs like any exonic

mutation can also induce exon skipping by altering

ESE and ESS motifs. In this regard, PTCs have even

been shown to be statistically more inclined to induce

exon skipping as compared to other exonic mutations

[29��].

Splicing mutations can be divided into two subclasses.

Mutations in subclass I completely abolish exon recogni-

tion while those in subclass II lead to both aberrantly and

correctly spliced CFTR transcripts, by either weakening

or strengthening exon-recognition motifs. Subclass II also

includes intronic mutations, which generate cryptic donor

or acceptor sites and can lead to partial inclusion of

intronic sequences. In addition, there are mutations

and polymorphisms that disrupt exonic splicing motifs,

which also affect the CFTR splicing pattern. Subclass II

mutations are associated with relatively milder forms of
Current Opinion in Pharmacology 2017, 34:125–131
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Figure 2

Antisense oligonucleotide-mediated therapy. (a) Masking splice junctions or splicing enhancers by ASO is expected to reduce exon recognition

resulting in exon skipping. (b) Masking splicing silencers by ASO is expected to promote exon inclusion. Abbreviation: ASO, Antisense

Oligonucleotide.
CF, due to the partial generation of normal transcripts,

translated into normal proteins [46].

Nevertheless, there is a marked variability in disease

severity both between different patients in the same

organ and in the same patient among different organs

[47,48] and reviewed in [46]. An inverse correlation was

found between the level of correctly spliced transcripts

and disease severity [48–52] suggesting a role for splicing

regulation as a genetic modifier of disease severity, in CF

patients carrying splicing mutations [46].

Splicing modulation

Overexpression of splicing factors was shown to modulate

the level of correctly spliced CFTR RNA [53]. Several of

the factors promoted higher levels of correctly spliced

CFTR transcripts leading to activation of the CFTR

channel and restoration of its function [53]. These results

explain the correlation between the level of correctly

spliced CFTR transcripts and disease severity. They also

support the development of therapies that modulate

splicing for CF and other genetic diseases.

Antisense oligonucleotide-mediated therapy

One novel therapeutic approach for genetic disorders is

based on the administration of Antisense Oligonucleo-

tides (ASOs) [54]. ASOs are single stranded short syn-

thetic RNA-like molecules that are chemically modified

to improve their ability to recognize their target RNAs,
Current Opinion in Pharmacology 2017, 34:125–131 
confer resistance to nucleases and provide favourable phar-

macokinetic properties [55]. Gene-specificity is accom-

plished by targeting the ASOs by base pairing to the desired

transcripts and to specific cis-acting elements within the

transcript. Oligonucleotide-based therapies have been used

to inhibit or activate specific splicing events, by binding to

an element and sterically blocking its activity or recruiting

effectors to this site (illustrated in Figure 2). ASOs were

shown to modulate splicing in cells with the CFTR splicing

mutation 3849+10 kb C-to-T and c.2657+5G>A [56,57��].
For c.2657+5G>A, ASO treatment increased the amount of

correctly localized CFTR protein at the plasma membrane

and hence, CFTR function [57��].

The potential of ASOs as a therapeutic approach is

demonstrated in several human genetic diseases resulting

from splicing mutations, including Spinomuscular atro-

phy (SMA). Recently, an ASO-based drug (Nusinersen)

completed successfully phase-3 clinical trials in patients

with infantile-onset SMA, leading to the drug’s approval

by the FDA (FDA approves first drug for spinal muscular

atrophy. 2017; https://www.fda.gov/newsevents/

newsroom/pressannouncements/ucm534611.htm). This

example demonstrates the great potential of ASO-based

splicing modulation for the treatment of genetic diseases

and emphasizes the importance of local delivery for

efficient treatment with minimal toxicity. An additional

extensively studied genetic disease is Duchenne mus-

cular dystrophy (DMD), characterized by progressive
www.sciencedirect.com
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muscle degeneration. Recently, the FDA granted a con-

ditional approval to Exondys 51 (eteplirsen), an ASO-

based drug treatment for DMD (FDA grants accelerated

approval to first drug for Duchenne muscular dystrophy;

https://www.fda.gov/NewsEvents/Newsroom/

PressAnnouncements/ucm521263.htm).

In light of the exciting supporting data from other genetic

diseases modulating the level of correctly spliced CFTR

transcripts using ASO-based approach has great therapeu-

tic potential for CF patients. The challenge in CF is the

delivery of the ASO in sufficient amounts to achieve

clinical benefit in the lungs. Many drugs are being deliv-

ered to CF patients by inhalation. Importantly, previous

studies have shown that inhaled ASOs have excellent

distribution throughout the lung, achieving cellular pen-

etration and activity without toxicity [58].

Conclusion
Among rare medical disorders, CF is considered a model

disease as it has pioneered studies in genetics, molecular

and cellular pathogenesis and drug discovery, paving the

way for other rare and common disorders. Excitingly,

forthcoming novel drugs targeting the molecular basis

of nonsense or splicing mutations might represent

‘curative’ treatments for CF patients carrying these muta-

tions. These will serve as a model for future highly specific

protein-function modulating therapies for other rare and

common diseases such as Haemophilia, severe epilepsy

and several genetically induced cancer types.
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